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In a recent articlé¢Phys. Rev. Lett72, 2797(1994] we analyzed the phenomena of self-replicating spots in
the Gray-Scott model. In this article we present those results in detail and generalize them to a class of models
that derives from our heuristic explanation of spot replicatj@1063-651X97)00107-4

PACS numbes): 82.40.Ck, 87.15.Da

[. INTRODUCTION is described in a manner qualitatively consistent with our
analysis. The article by Doelman, Kaper, and Zegeling is

In this article we discuss the self-replicating spot, a par<omplementary to and is of the greatest relevance to the
ticlelike phenomenon that occurs in reaction-diffusi®D)  present analysis. They use geometric singular perturbation
systemg 1]. The spots consist of localized regions in which methods to prove the existence of “a plethora of periodic
the concentrations of the reactants differ from the surroundstationary solutions™ to the Gray-Scott model. They also
ing concentration fields. They grow, reaching a critical sizeProve the nonexistence of any rigidly traveling spot solu-
at which time they divide in two. The two resulting spots tIOI"ISE travelmg spot soluthn:s_ defo.rm as they trgvel. This is
again grow and divide. This process, which is visually simi-consistent with our analysis in which the traveling spot so-
lar to cell division, continues indefinitely. The long-time be- lUtions ultimately undergo an instability that leads to repli-
havior depends on the precise values of the external contr&G@ton. _ _ _
parameters, but typically consists of a chaotic “soup” in Our main goal here is to present in detail and to general-
which many spots compete for resources as illustrated in Fig.ze_' the asymptotic analysis that was sketchefbin Section
1. Those spots that find adequate resources continue to grolvintroduces the Gray-Scott model and expands upon the
and divide. Those that are unable to find adequate resourc8g@litative picture of spot replication presented . Sec-
decay into the background. The spots observefil]jnvere
found during an attempt to model labyrinthine patterns inthe @
ferrocyanide-iodate-sulfatéFIS) reaction[2]. Since then,
replicating spot patterns have been observed both numeri-
cally and experimentally in the FIS reactif,4].

There are obvious differences in the Gaspar-Showalter
model of the FIS reactiofb] and of the models discussed by
us and others. This fact suggests that replication is a generic
feature characterizing a broad class of reaction-diffusion sys-
tems. In[6], we presented some arguments in support of this
proposition. These arguments included both a heuristic de-
scription of the process of replication and demonstrations of
analytic features common to several related model RD sys-
tems. It turns out that replication is more general than our
analysis accounts for. Nevertheless, we think it worthwhile
to spell out the details of the theory presentediéh

We remark here that various aspects of the replication
phenomenon have been discussed by other auff¥o&.
Kerner and Osipov have a large body of work on large-
amplitude dissipative structures including an analysis of the
static division of one-dimensional pulses as the system size
is changed. Gurevich and Mints have a body of work on FIG. 1. Snapshot of the replicating spot phenomenon in two
replication of thermal hot spots in composite superconductspace dimensionfrom two-dimensional simulations described in
ors. In the article by Petrov, Scott, and Showalter replicatiorj1]).
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tion 1l is devoted to developing in detail the one- spot act as integrators of the feed, channeling the collected
dimensional asymptotic analysis of the Gray-Scott modefuel into the spot. Thus every spot has a quiescent zone
that we sketched if6]. Section IV will generalize our scal- around it, which collects the fuel required to keep it burning.

ing results to kinetics other than the ones considered in detail Consider what occurs as the strength of the external feed

in Sec. lll. In Sec. V we summarize the main points of thisis varied. For low feed strengths, the spot remains localized,
paper. consuming all the fuel that diffuses into it. A finite region
can support several spots provided the distance between
Il. THE GRAY-SCOTT MODEL them is great enough that they can collect sufficient fuel. As

_ o _the feed strength is increased, an isolated spot increases in
Both the asymptotics and the qualitative arguments willsize in order to consume all of the fuel it receives. As the
be developed in relation to the Gray-Scott model. The mode$pot widens, it will eventually reach a point where the lateral

[9] is given by feed is inadequate to maintain its center in the high-
temperature state. In this situation, the temperature at the

‘9_”_ 200 12 _ center of the spot will drop, leading to a double-bumped

=Veu—uv*+A(1—-u), ;

at 1 spot. This structure may be thought of as two nascent spots,

(1) each with an asymmetric flux distribution. The spot either

ym _ p
L ) moves towards regions of higher flux until the flux distribu-
ot 6°Vv+uv®—Buv. tion is equalized or increases to the point where an additional

replication occurred.

Hereu(x,t) andv(x,t) are scalar fields representing the con-  This model gives, within a reaction diffusion framework,
centrations of two chemical species. The ratio of their diffu-the classical mechanism of size selection through competi-
sion coefficients i$2 andA andB are parameters describing fion between the rates of growth of the surface area and the
a feed from an external reservoir with the fixed concentra¥olume [10]. This mechanism is related to the “activator-
tionsu=1 andv =0. We now present the heuristic picture of inhibitor” model [11], with the fuel playing the role of in-
spot replication that describes the behavior observed in Eqbitor. It is important to note, however, that this is not a
(1). uring instability, but rather a different type of structure in

We begin by considering a region of ground where somé" excitable system. We note th_at this de_scription is not mar-
flammable liquid fuel @) is continuously seeping in from a ried to any.palrncular set of kinetics; any klngtlps that provide
reservoir maintained at unit concentration. This effect isthese qualitative features should do. We will in fact demon-
modeled by the termA(1—u) in Eq. (1). This diffuses rap- strate replicating structures in other models.
idly relative to the temperature. If the fuel is depleted

locally it will diffusg in from the sides to bring the Igvel_back IIl. ANALYTIC SOLUTIONS IN THE LIMIT  é<1
up. We refer to this effect as the “lateral” or “diffusive”
feed. We now turn to analytic solutions of the systéi in the

We now consider the effect of increasing the fuel's tem-limit §<1 that correspond to the evolution observed in Figs.
peraturev, which at equilibrium is a constant, say=0. 2 and 3. We can see from these figures that the spatial do-
The fuel seeps up so slowli;e., A is smal) that if the entire  main is divided into “inner” or spot regions wheteis large
domain is ignited the fuel will flare up and burn oy andu is small and “outer” regions whera andv are closer
mathematical model would have only one fixed point: fuelto their fixed point valuesu= 1, v=0). In the outer regions,
concentration equal to 1 and temperature equal toTBe all the extrema ofi andv are maxima and minima, respec-
kinetics of the fuel and fire are excitable, i.e., if the fuel istively. Thus all the maxima ob and minima ofu occur in
warmed by the sun, it will not do anything special, relaxingthe inner regions. In this section we determine how the dif-
back to its equilibrium value when the sun goes down, but ifferent quantities scale witl# and obtain the equations of
it is perturbed by a blowtorch, we expect it to start burningmotion that the rescaled quantities satisfy in the different
and the temperature to increaéghich is to say that the regions. We also show that the solutions in the different re-
system exhibits autocatalytic behayidBuch behavior is, for gions can be “matched” so that they go smoothly into one
example, given by the local kinetias= —uv?+A(1-u), another. We discuss the main features of the solutions that
v=uv’—Bu. we obtain in this way and compare them with those found

Finally, any fire that starts will spread diffusively across via numerical simulations of the original set of equati¢hs
the field. We will require that the diffusion constant for this for very small 8. This comparison shows very good agree-
process is much smaller than that of the fuel spreading; foment.
this reason, we include the small parametein front of the
diffusion termov = 6°V?v + uv?—Bu.

Consider what happens when a localized region of the
fuel field is ignited. The fire will slowly begin to spread, until  In order to determine how, v, x, and the velocity of the
it is consuming all the fuel it can get. As the fuel is depletedspotsC scale with 6, we performed a series of numerical
in the burning region, it creates a gradient in the fuel con-simulations for different small values &f Then, by plotting
centration, which results in the fuel diffusing into the burn-the characteristic length scabesnd the maximum and mini-
ing spot from the sides. Note that the lateral feed is essentigihum values ofu and v in the different regions and the
since the external feed is not sufficient by itself to keep thevelocity C as functions of§ we extracted the scaling rela-
fire burning. In essence, the nonburning regions around th&éons.(The scaling can also be determined analytically with a

A. Scalings
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6 Since the spots travel @(1) distance at a®() velocity,
(2) we conclude that the slow time scale@ s ). The solu-
tions that we construct are valid only during these long slow
intervals, but they do predict when and why replication oc-
curs. As we show later, these slowly varying solutions are
such thatu has a unigue extremum in each outer and inner

W
—_———
=
_\/—W\/—
=
- W _ . _ n _ .
¢ 3v region (maxima in the outer and minima in the inner re-
= =

gions.

B. Rescaled quantities and equations of motion

Taking into account all these facts, we derive now a sim-
of . . = — - plified set of equations that determine the evolution of a
single spot in the intervdixy ,x}']. Herexy andx)' are the
locations of two successive maximawthat are, in general,
functions of the slow O(5™1)] time variable. Any point in
the spot can identify its position. We will call this point
(b) x7'. We will show that it differs from the location of the
unigue minimum ofu in this interval by anO(§) quantity.
= - The pointhrll“ isMaIs_o a_fl_mctiqn of the slow .time- variable. Th?
_._/—J—J—/—///-\/\/‘/;: m_terval[xO X ] is divided into three regions: th_e outer re
15 —J—///frr,—’ gions to the right and left of the spot and the inner region
Vbt ///,,, centered ak}'. As we show later, the single-spot solution
/f, can be used to construct an array of moving spots on a larger
=— 3 (possibly infinit¢ domain.
Given the observed scalings, we define

25

Tin=B71= 6Bt, (2

400 500

. B

Xin= S [X_le( Tin) | (3
FIG. 2. Space-time plot ofi andv for a simulation withA
=0.02, B=0.079, and§’=0.01. (8 U+at vs x with a=4 in the inner region and
X 1074, (b) V+bt vs x with b=3.2x 1073,
Tout™ 7= Ot (4)
few assumptions about the nature of the solutijoWée find
thatvy,~ 81, C~ 8, Ujy~Xin~ 8, Upur~Xour~1, anduvgy is  in the outer ones. We also introduce the following expan-
transcendentally small. The subscripts “in” and “out” refer, Sions ofu andv in powers ofé:
respectively, to the inner and outer regions.
_ T_he simulations also show that there are two cha_racte_rls- =6yBY suli+y, (5)
tic time scales. The spots evolve slowly over long-time in- i
tervals and then divide and replicate on a fast time scale.

vin=08 1B Sy, (6)
i=
20 o
Uout™ 'ZO 5lugljt @)
1=
15
and assume
v+at
10 Uour= 0. (8
=— We introduce the expansioiis)—(8) and the rescaled co-
= ordinates(2)—(4) in the evolution equation$l). Equating
=— terms with equal powers i yields the following hierarchy
=eeTr= of equations. In the outer regions, fox(5°),
0 100 200 300 200 500
X

2
Uoe= —A, ©

—A
FIG. 3. Space-time plot oV similar to Fig. 2, but forA ax?

=0.004, B=0.063, and §°=0.01. V+bt vs x with b=3.2
X 1073, and forO(8"), n=1,
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2 . gﬂt_l) solutions where the regions m_eet. The slow time variables
e Alugh= Fr— (10 Tout a}nd Tin €Nter only parametrlcally.. Thereforg, each equa-
out tion is an ordinary differential equatiofODE) with coeffi-
In the inner regions, foD(5™ 1), cients(e.g.,c) that are actually functions of,; or 7. In
order to solve the ODE’s we need to supplement them with
g2ul Do boundary conditions, which will also be functions gf,; or
x _Uf )Ul(n)z_o’ Tin- The matching of the solutions in the different regions
" (11)  determines these boundary conditions. For this reason, we
2o P (1) will first analyze how the solutions behave in the “match-
_“ +c(7y) <1)+u<1>vl<nl> =0: ing” region and then deduce the boundary conditions that
19Xm IXin allow the construction of a solution uniformly valid in the
for O(&°) domain[xgy ,x}']. For the clarity of the presentation we con-
' centrate in this section on the leading-order equations. All
A higher-order calculations are discussed in Appendix A.
u(z) g From both the left and right outer regions, the matching
E( (2)) | (12)  regions correspond to the limii=x7". In the inner region
Uin IVin the left and right matching regions correspond to the limits
ITin Xin— *. The conditionv,,=0 implies thatv;;—0 as
" Xin— = . Thus, if in Eqs(11) we neglect the terms that are
for O(57) nonlinear inv;,, we find
5( uf,f’)) Uty
vl pral (16)
(1)
— () et g U o 2ol G SRS L R
= 2) ; “ox2 Tin) Uin . 17)
Min” () 2),(2) in Xin
I —u; vIn va vin Ui
(13) Equations(16) and(17) imply that
n
and forO(8"), n=2, VI (18
(n+2)
r Uin
( vi(,TJ'z)) vV ~v... exd (—c27JcZ4+1)x;,]  as Xiy— =,
(n—1) (n) (19
n— n
AU, —c(7in) %4_ =) ui(r?)+[uinvﬁw](n) i i
ITin X, B whereL., M., andv.., are functions ofr;,. Using Egs.
= ity ; (14 (18 and(5), we find that
It _[uinvin](n>

Uin= (£ L. Xin+ M) +0(5%), (20
where we have defined the linear operator

92 (1) in the matching regiongl2].
_2__v|(nl>2 5 —2u in Uln In order to determine the behavior of the outer solutions
L=| X s J__ 1. (1) | in the matching regionx~x]', we Taylor expand them
(1)2,.(2) 5 +C(Tin) 1+ 2ui'vig o i
s ax IXin aroundx=x7". We define
(15
; (n) —(n) m
the rescaled velocitg(7;,) = VB(ox]/dri,) = C/ 5B, and M= (Tou) = Uour ( Tour,X1),  N=0 (21
[uw 2]V =[uw2]™ - (vt u(n+2 +2uMp Dy n+2)y, and
where [u;w2]™ is the sum of the terms o®(1) in the -1
expansion ofu;,v2/B%¥25". The boundary conditions, re- L (rp)=—at | =1, 22)
quired to complete the definition af, are specified in the a IX x=x"

following subsection and Appendix B.

where the subscripts- and + correspond, respectively, to
the outer regions to the left and right of the spot. Using these

Now we need to solve each equation of the hierarchy irdefinitions and Eq(3), we then write the outer solutions in
the appropriate region and then “match” the inner and outethe matching regions as

C. Matching and boundary conditions
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u0, =M@+ LB (x—xP)+--- =MD+ 5L Px;,+ 0(57),

(23
ush =M +0(8),
from which we obtain
Uoutr = UE)?J)tt + 5“5)3: +ee
=M+ 5L Pxn+MP)+0(8%). (29

Thus, in order to have,= u;, in the matching regions, we

find from Eqgs.(20) and (24) that

MP (100 =0, (25
L& (7o) =*BL., (26)

and
M® (7o) = VBM.. . 27)

cosi AY2(x—x\)]
cosHAYAx]—x1")]’

U (X) =1~ (3D)
where we have used E¢R5). Once we have the solutions
ul®), (7,49, we can calculate thBuxesof u into the spot to
leading order ins, L'}, by means of Eq(22). As the reader
will notice, they provide a link between the analytic solution
that we discuss in this section and the heuristic explanation

of spot replication presented in Sec. Il. If we further use Eq.
(26), we find

Al/2
L=45 tanhAY(x"—x3),
(32
A1/2
Li=5" tanh AYA(x}!'—xT).

Notice that, sincexy<xT'<x}', then 0<L.<AY?B. As
one would expect intuitively, the fluxds.. are monotonic
bounded functions of the distance from the spot to the adja-
cent maxima.

Thus, this discussion shows that the appropriate boundary Given the fluxed. .. into the spot at a particular time,

conditions for Eqs(11) are

aulb
]
(9Xin -
(28)
vi(nl)—>0 as Xj,— *t o,
while those for Egs(9) and (10) are
AT
X | _m X | _m
=X =X
(29

UE)TJ)t—|x=xT* = M(—n)(Tout)! L'E)E)t+|x=><rl"+ = MT)(TOU,),

given the fact that we are looking for solutions such thatu(l) The derivatived. @ of u®
Uyt has maxima aky andx)'. Equations(25)—(27) deter- oz (7). - °
mine how the boundary conditions of the inner and outeg

equations are related.

D. Construction of the single-spot solution

the boundary conditiong28) are completely specified.
Therefore, in principle, we can solve Eq41). We do this
numerically by a shooting method. Solving E¢§1) deter-
mines the values of andM .. (see Appendix B

Using Egs. (32) and the definition ofc, c(7y)
= {B(dx™ d;,), we find
dL . A
= _ - ) 12
aTin—+c(T,n)\/B(—zB Li>. (33

Sincec is uniquely determined in terms df. by solving
Egs.(11), then Eq.(33) can be integrated to find.. at any
time 7, which in turn can be used to obtai{"(r;,) and
¢(7,). Therefore, by this procedure, we kndw , ¢, and all
their 7 derivatives at any time. Knowing this amdl.. , which
we also get by solving Eq11), we can completely specify

o L= can then be used to
integrate Eq(12) as we explain in Appendix B. In this way,
he solution up to ordefin u and ! in v is obtained as a
function of ~.

E. The inner equations and their solutions

We_now show hovsito_ obtain the single_ spot _squMtion Upto  \we now describe the properties of Eq&1) and of the
ON(I5) inu andO(5™7) in v for a case in whichy and  sojutions that satisfy the boundary conditia@8). We first
X1 do not Change with time. This holds, in parthUlar, when note that the feed term Qf, A(l_u), is Comp|ete|y absent
xg =0 andx}'— (i.e., a spot moving into an infinite me- from Egs.(11). This agrees with our heuristic picture of spot
dium). In order to simplify the notation, since we focus on formation: a spot’s structure is determined by the lateral
the leading-order terms, from now on we drop the superfluxes of fuel into it, which to this order aie™ andL (.
scripts(1) from the inner solutions, unless otherwise noted.The absence of the feed term also allows us to scale the rate
The construction of the single-spot solution to all orders isg out of the equations, such that the solutions for different
discussed in Appendix B. values ofB are related by a simple rescaling of the variables.
Equations(9) and(10) subject to the boundary conditions another feature of the equations is thiu;,/Jx%=0 for all
(29) can be solved explicitly to all orders and for afjis. . due to the fact that;, and v, are never negative. This
To leading order we find means thau, can only have one minimum and no other
extremum. Thus we cannot describe pulse division ofuthe
(30  field using the inner equations alone. However, we can ob-
tain solutions with different number of extrema ir,. In

cosh AY2(x—x]
coshHAYAxT—xg)]’

U (x)=1
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FIG. 4. Plot ofc as a function ofL_ for (a) L,.=1 and(b) -

L, =1.7901.
FIG. 5. Plot ofc as a function ofL_ for (a) L, =1.334, (b)

particular, we are able to predict spot replication since the.,=1.3385,(c) L, =1.3387,(d) L, =1.34, (¢) L, =1.347, and
splitting is always preceded hy,, going from having one to (f) L, =1.38.
having three extrema.

We mentioned before that solving Eqg&ll) and (28)  solutions lie on the dashed curve and one on the solid one,
gives the velocityc as a function ot . . In general, there is  while in the other interval the situation is reversed.
not a uniquec for each pairlL_, L), but a discrete set of  The two curves approach one anothet.asis increased
values. Of all the possible solutions, we will describe onlyand so do the intervals with four solutions. At ~1.3387
those that we think are relevant for spot replication, unles$rig. 5c)] the intervals merge, the two curves come together,
otherwise noted. Even if we restrict ourselves to these casegnd the solutions on both of them become equal at the new
the surfacec(L_, L) has various sheets that are inter- point of intersection. A4 . is increased further, two “new”
twined in a complicated fashion. We describe its structuresolid and dashed curves can be distinguished, which do not
using cuts of constarit, . Note that due to the symmetry of intersect. They separate as shown in Figl) 5which corre-
the equations and of the boundary conditions, if there is &ponds td. . =1.34. Note that half of each of the new curves
solution withL _=L4, L, =L, andc=c, then there is also  shown in this figure “comes from” the solid curve of Fig.
a solution withL _=L,, L, =L, andc=—cy. Thus plots  5(g) while the other half comes from the dashed one. As
with constantL _ can be obtained from those with constant|, is increased further, the “loop” of the upper curve
L, by simply changing the sign af. We show in Fig. 48)  shrinks and finally disappears. This occurslLat~1.347,
a cut of constant. , =1 and in Fig. 4b) another one with which is shown in Fig. &). Also at this point the two sym-
L+ =1.7901(these values were the ones used for the simumetric solutions with._=L ., andc=0 become equal and
lations shown in Figs. 3 and 2, respectivelin both cases disappear as . is further increased. The absence of sym-
we observe two curves, but while in Figa#they intersect metric solutions withc=0 may be observed in Fig.(B;
atL_=L,, c=0, in Fig. 4b) they do not intersect at all. which corresponds td., =1.38. We also observe that the
Moreover, the value of for the solid line curve in Fig. 4 is  singularities in the derivative of the upper curve disappear as
never zero. We show how this intersection disappears in Fig. . is increased.
5, where we have again plottedss L _ for various values of
L, between 1 and 1.7901. A smooth change occuils as F. Putting the pieces together

increased betweeln, =1 andL , =1.334: the dashed curve . .
goes from crossing the line=0 only once(atL =L ) to We now match the inner solutions to the outer ones to

crossing it three times(preserving the crossing at determine the dynamics of the patterns. As before, we re-

L_=L.). We do not show this change in Fig. 5, but it is not Strict ourselves to cases in whicff' andx}! are time inde-
hard to imagine how it occurs. We do show how both curveg®endent. For simplicity, we further assume thgt—oo, the
behave at., =1.334 and 1.8L_<1.38 in Fig. a). There  extension to finite<}' being straightforward. Under these as-
we can see that for some range of valuek ofthere are four ~sumptions, Eq(32) implies thatl .. is also time independent.
different solutions: three on the dashed curve and one on thEhus we can readily use Figs. 4 and 5 to study the evolution
solid one. The two curves still cross &t =L, , ¢=0, of the whole solution. Equation82) also determine that 0
which means that there are two stationary solutiph3]. <L_<L,=AY9B at all times. Therefore, the inner solu-
These solutions are both symmetric, one single bumped ariibns withL _>L , are not relevant for this case.

the other double bumped. Figurébb corresponds td_ . Let us first consider a case with’4B=1 [Fig. 4a)] and
=1.3385. There we see that there are two intervals of inner solution lying on the solid curve. Assuming that ini-
with four coexisting solutions. In one of these intervals threetially x7' is finite, thenL _(0)<L, andc(0)>0. Thus, ac-
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cording to Eq(33), L _ will increase steadilyl._—L, , and 1.0 0.2

¢ will decreasec—0, asT—x. Therefore, the system ap- I (i) ) o1k - ®)

proaches a symmetric stationary solution asymptotically in oo BRI

time. A similar situation holds if the inner solution initially 0.0 0.0

lies on the dashed curve of Fig(a), but in this case the 05 0.1

system would go to a double-bumped solution, if it were 06 08 10 12 14 16 130 132 134 136

stable(which it turns out not to be (©) R (d)
Let us now consider a case with’%B=1.7901 [Fig. a 0'11\&\(,,—7"" o IR |

4(b)]. If initially the inner solution lies on the solid curve and ek \\\\/\_k’ I AN

x7' is finite, thenL _(0)<L, andc(0)>0 as before. How- 0 ] o 7]

ever, in this case, while _ also increases, approachihg 133 154 195 196 187 130 182 184 146 138

asymptotically in time,c goes to a nonzero value. This 1.0 1.0

means that the spot, were it stable, would continue to move . (e)_ 05k T S O

forever at an almost constant speed. On the other hand, if the el =

inner solution lies initially on the dashed curve ax{l is 0.0 00

finite, thenv (x) approaches an asymmetric stationary solu- g5 05

tion for which c=0 andL_=L*~1.256. If initially L_ 08 1 12 14 05 1 1.5

<L*, thenL_ will increase andc will decrease with in- L

creasing time, while the situation will be reversed if initially

L_>L*. i . . FIG. 6. Plot of the maximum growth rate of the instabilitiess
How do these behaviors compare with the numerical fynction ofL _ for the solution branches of Figs. 4 and 5 with

simulations of Eqgs(1)? We can compare the, =1 case | ,=1 (b L,=1.334, (c) L,=1.3387,(d) L, =1.34, (e) L,

with the simulation of Fig. 3 and the, =1.7901 case with =138, and(f) L, =1.7901. Dashed and solid lines correspond,

the simulation of Fig. 2 before the first splittinffhe com-  respectively, to dashed and solid lines in Figs. 4 and 5.

parison is done on half the spatial range spanned by the

simulation. In both cases we observe that after the initial 52

transient dies out, the system approaches a situation in which v v%f— 2Uivin =0,

the inner solution lies on the solid curves of Figsa)4and in (34)
4(b). Indeed, the analytical solutions are in very good agree- P J
ment with the numerical ones, as we will show. —Z+Uﬁ1§+ 2Uivinm+C on _ n=\7.

Now, there is a major difference between the cdses IXin IXin

=1 andL,=1.7901. While in the first case the analytical

solution describes the evolution observed in the simulation In the puter region, the I|ne_ar|zed eq.“a“o'f‘s allow pnly the
for all imes, in the second case, the agreement lasts onl ull solution to leading order id. Matching this to the inner

between splittings. As mentioned before, the dynamics durl€9ion perturbations yields the boundary conditions

ing splittings cannot be described within the assumptions of P
our analytical solutions since the splitting transition occurs —0 as Xj,— *o,
on a fast time scale. IXin (35)

Given these results, we might then ask the following two
qguestions. First, why does the numerical simulation always
1 1 H H H ?

choose” an inner solution that lies on the upper curves” For a given value of, andL_, we determine the sta-

Second, why does spot splitting occur for, =1.7901? In . ; . .
addition, related to this, does the analytical solution providebIIIty of the solution by calculatingi;, andui, numerically

any hint on when a splitting is about to occur? The answer tind then computing the eigenvaluesf a spatial discretiza-

these question depends on the stability of the solutions th Inosr,:ag{”;[hev\?sekrﬁgxsiﬁi)t ta;lr:jre(si?élevapzsgl\;z r):) Ié?pgr?\?alue
we discuss in the next subsection. Y- y 9

due to the translational symmetry of the equations. This pro-
vides a useful check on our numerics since the zero eigen-
mode is proportional to the derivativesu;,/dx;, and

We interpret the splitting of the spots as an instability dv, /X, .
of the spot solutions just described that occurs on the In particular, we have looked at the stability of the solu-
fast time scalé¢. To demonstrate this, we calculate the sta-tion branches plotted in Figs. 4 and 5. We show some of the
bility of the solutions of Eq(1). We introduce a perturbation results in Fig. 6, where we have plotted the maximum eigen-
to the base solution: u(x,7)—u(x, ) +&(x,7)exd(\M/B)t],  valuea of the operator$34) and(35) as a function ot _ for
v(X,7)—=v(X,7)+n(X,7)exd (A/B)t], where é~0O(8) and various values ofL,, with solid (dashed curves corre-
7~0(81) in the inner regions ang~0O(1) and»=0 in  sponding to soliddashed curves of Figs. 4 and 5. Figure
the outer ones. Note that the perturbations evolve on the fa${a corresponds to the solutions of Figaj for which L
time scale, whereas the base solutiansndv vary only on  =1. There we can see that the solid curve solution is stable
the slow time scaler. Linearizing Eq.(1), transforming to  while the other one is unstable. This explains why only this
the inner coordinates, and keeping only terms to leading orsolution is observed in humerical simulations of the (d&t
der in §yields This situation (i.e., a stable solid curve and an unstable

7(Xin) =0 as Xjy— = e.

G. Stability: How spot splitting arises
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0,012 T T T ———.———n reason we modify the equations accordingly, as described
before. An instability in this case implies that it is impossible
to split the original set of equationd) into the hierarchy
(9)—(14). It also implies that our approximate base solution
is no longer “close” to the actual solution of the full sg).

This breakdown of the model precludes the type of analyses
that are usually done in bifurcation theaiindices, eto.

0,01

0.00F

o o.06f
E H. Comparison with the numerical simulations

We have compared the analytical solutions with those ob-
tained from numerical simulations of the original equations
(1). We have found very good agreement both in the “form”
of the spotsu{M(x;,) and v{P(v;) and in their velocity
c(7i,). We have also observed that spot splitting occurs after
the onset of the instabilities. This means that the stability
calculation allows the prediction of the occurrence of split-
R _tings. All .these properties are an indication that the analysis
) .5 is essentially correct.

We illustrate some of these results with Figs. 7 and 8.

. _ o Figure 7 is a plot of the maximum growth rate of the insta-

FIG. 7. Plot of the maximum growth rate of the instabilivas  pjjity o as a function of the location of the spot in rescaled
a function of the location of the spot in rescaled coordinaféor coordinatesx™ for the solution on the solid curve of Fig.

the solution on the solid curve of Fig.(8), which hasL, - _ . . L
=1.7901. We observe that the onset of the instability occurs aﬁ(b)’ which has!_+ 1.'7901.' This z.inalytlcal SOIU“S” Is 10 be
X"~7.8 compared against simulations with=0.02 andB=0.079.

o Figure 8 is a plot of the spot location in rescaled coordinates

. . . . x™ vs 7, for this analytical solution; a simulation witA
dashed onecontinues to hold if we further increate. until —0.02, B=0.079, andd®=0.01: and a simulation witt

we reach t_he point at which there are three different solutions. 0.02.B=0.079, ands?=0.0001. We can immediately ob-
on the solid curve for the same valueslof andL , [see,

: ; . X serve the good agreement among all curves before the occur-
€.9. F|gs._ﬂ)) and ¥c)]. At this point, some of the soluthns .rence of splittings. This means that the analytical solution
on the solid curve are unstable, as may be observed in Fi

6(b). We also see that all the solutions on the lower curve o lves a good approximation of the numerical one between

. . plittings. On the other hand, if we compare Figs. 7 and 8,
Fig. 5(c) are unstable. When the SOI'q and das_hed curves 0\?ve observe that the onset of the instability of the analytical
thec vs L_ plot are rearrangetkee Fig. 5 and its explana-

. - : solution occurs before the splitting and that the time delay
tion), the stability also changes. The solutions on the NeW -wveen both events decreases withrhis behavior high-
solid curves are stable for low enough valuesLof, but

become unstable for large values lof . This may be ob- lights the predictive value of the stability calculation. The

S stability calculation is done under the assumption that th
served in Fig. &), where we have plotted the valuesmfor y ° do © pflo ©

. : instabilities grow on a fast time scale. It is clear that this
the s_olut|ons of Fig. (). There we see that glthough the assumption is violated immediately after the onset, where the
solutions on the dashed curve of Figebremain unstable

. rowth rate is as small as we wish. Therefore, there is a time
for L_e[1.3, 1.3§, the values ofe decrease continuously g

~ - ™ interval on which our simplified model with two separate
from «=0.15 atL_=1.3 to O‘NO'O.l atL_=1.38. Qn the time scales does not hold. Since the slow time scale is of
other hand, there are stable solutions on the solid curve

. . . (671, we expect the simplified model to be valid after the
Fig. 5e) for all L_<1.3476, but all the solutions on this : ; :
CLIJgrveS(a)re unstable fok _>1 34u76 This ex uIallins wh a:t growth rate gets bigger thail As is clear from Fig. 8, the
- 0 hen there i ' : P d y brescaled timer at which this occurs decreases wighThis
L.=1.79 1 when there Is a one to one correspondence Beseang that the transient with no separate time scales gets
tween solutions on the solid curve and values of] see Fig.

M th uti hi ¢ bei bl smaller with §. Thus we expect the stability analysis to be
5(f), the solutions on this curve go from being stable aty,,re accurate a8 decreases. In fact, this may be observed
small values ofL _ to being unstable at large values lof

’ ¢ in Fig. 8, where it is clear that the onset of the instability

[see Fig. 6e)]. As we have already mentioned, the cdse  gives a better estimate for the time of spliting asgjets
=1.7901 corresponds to the numerical simulation of Fig. 25y aiier.
before the first splitting. Thus we conclude that the splitting
occurs because the solution becomes unstable.

The stability analysis in this section is somewhat different
from the standard linear analyses that are the foundation of So far we have considered a single spot moving into an
bifurcation theory. Here the analysis is of the model thatinfinite medium. However, our solutions describe correctly
arises when the evolution occurs on a slow time scale. Wéhe evolution observed between splittings in simulations with
obtain the base solution assuming that time scales a&ny number of spots. Suppose that we want to describe the
O(5~ 1) and we thus approximate it by a solution of the first evolution of N spots in the interval0,<] that are located at
set of equations in the hierarcli9)—(14). We then look for  x{"(7,), 1<i<N. We are interested in the case in whigh
instabilities that grow on a®(1) time scale, and for this has a maximum atx:x(’\)"=0 and another one ak
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I. Construction of the N-spot solution
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20 T T T T
18 T .
16 e ]
14 . FIG. 8. Plot of x™ vs 7,
P 0= 0.0001 — =7/B for a simulation with A
7 12t N analytic trsaj;ctbry ----- . =0.02, B=0.079, and6®=0.01;
% ~ instability onset x a simulation with A=0.02, B
® 10 . =0.079, and5>=0.0001, and the
g gy ™ analytic solution that corresponds
< gL N4 . _ to these values oA andB (i.e.,
5 e L,=1.7901. A comparison with
P 722 — i Fig. 7 shows that the splitting oc-
curs after the onset of the instabil-
4 i ity.
2 7 .
O 1 ] 1 1
0 50 100 150 200 250

T /B (dimensionless)

=xM 2 for all 7,,. The coordinates of all the other maxima Where, as beforeg;= VB(dx"/d7;,) andcy=0. TheN-spot

of u,xiM, 0<i<N, are functions ofr;,. Assuming the or-
, 1<i=<N, the variousx’s andx™s

deringxM ; <xM<xM

are related by

m m
v Xi+1TX

x'=—"5—, 1=i=N-1,

Thus, using an extension of Eq82) to the case oN spots

(36)

and Eq. (36) we can write the rescaled fluxek.;=

+LY/B into theith spot as

A1/2
L_ 12? tanI’(Al’Zx’f) ,

B 2
(37)
A1/2 A1/2
Lo Fta“*(T(X?ll—X?”), 1<i<N
Al/2
L+N:F1
from which we find
L B A _
&Tinl:7[Ci(Tin)_Ci—l(Tin)]<¥_Lz_i>, 1<i<N
L. \/E A )
&Tin|:7[Ci+1(Tin)—Ci(Tin)]<¥—L2+i, 1<i<N
(38)
f9|—+N_O
(9Tin s

solution can be constructed in almost the same way as we did
with the single spot one. Given the distances between spots
or the fluxes ofu into each of them, we can solve Edq$1l)

for each spot separately. This determines the valuesarid

of the other parameters of the solution as a function of the
fluxes. This information can then be used to integrate Egs.
(38). Here is the main difference with respect to the single
spot case: now the time evolution of the various spots is
coupled by Eqgs(38). Once the fluxes and the velocities are
known as functions of;,, we can go to higher orders as in
the single-spot case.

IV. OTHER MODELS

An analysis similar to the one presented in the preceding
section can be carried out for a whole class of models of
which Egs.(1) are a particular example. The evolution equa-
tions for the models in this class can be written as

Ju
a:VZu—uavﬁJrA(l—u),
(39
v
az 52V20+U706— Buv,

wherea=0, 8=0, y>0, e>1, anda(e—1)<pBy. Also in

this more general case we can divide the space into inner and
outer regions of widtfO(8) andO(1), respectively. In the
outer regionau is of O(1) andv is transcendentally small,
while in the inner onesy~ §2(P~DIBy=(a=1)(e=1)] gndy

~ §2Y1By=(a=1)(e=1)] We can obtain a hierarchy of equa-
tions equivalent to Eq99)—(14) if we introduce the same
rescaled coordinates as before and power series expansions
for u andv consistent with the new scalings. In this way, the
equations to leading order ifiare Eq.(9) in the outer and
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scale separation we had assumed.

Hagberg and Meron8] also see spot replication in a
modified Fitzhugh-Nagumo model. This model has also been
analyzed in this context by Muratov and Osipd4]. The
analysis in[8] is centered around the nonequilibrium Ising-
Bloch transition: a bifurcation from a static front to a pair of
c counterpropagating Bloch waves. This transition is in es-
= A=< sence a pitchfork bifurcation in which the=0 solution
loses stability to solutions= =+ \/&, wheree is the distance
from the bifurcation. In their work spot replication occurs
when the velocity of a propagating curved front changes sign
as a function of curvature along the front. Thus the variation
of curvature along the front is a key element in the analysis
of Hagberg and Meron. However, one of the experimental
observations is of a growing disk of higiH. Eventually the

FIG. 9. Space-time plot o for a model of the form 39 with  center of the disk collapses, leaving a propagating annulus.
a=0, B=1, y=1, e=2, A=0.3, B=0.08, and5°=0.005. V  This effect has not been observed in the modified Fitzhugh-
+bt vs x with b=3.2x10"°. Nagumo model, which forms the basis of the work by Hag-
berg and co-workers. It seems unlikely that it will be ob-

w
il

{

T

=

0 100 200 x 300 400 500

ouV) W (P served since no replication has been observed in the one-
W_ui” vin’ =0, dimensional modified Fitzhugh-Nagumo equations. The fact
in (40) that the annuli have curved fronts should not make much
2 (1) 1 difference since the curvature is constant along the front.
9Vin Iin (D), (DY (D In a key respect our analyses are similar in that a
7~ +C(7in) Vi tUip’ vip’ =0 ; ; ; Qi intringi
IXiq OXin multivalued function of either extrinsic or intrinsic param-

eters(such as flux and curvatyrand the stability of the

in the inner one where the velocitydefined as before. =0 solution changes at a bifurcation point. However, in our

The outer equations can be solved to all orders. Howevegase thec surface has many different sheets that are inter-
we cannot ensure the existence of a solution to B4.in  twined in a complicated fashion as can be seen by the cuts
the general case. If such a solution exists, then the matchirghown in Fig. 5, whereas in the case considered by Hagberg
and the construction of the whole solution can be carried ouand Meron the static=0 solution undergoes a pitchfork
as before. On the other hand, we cannot ensure that thi¥furcation. As far as qualitatively matching the experiments,
solution would be “attracting” in the same way it is for Eqs. we do not do a particularly good job either since our spots
(1). However, in all the cases we tried we observed spotorrespond to spots of high concentration of the autocatalytic
replication in the simulation of the corresponding E@9).  species and the experimentally observed spots are spots of
We show an example in Fig. 9, where we have plottechigh pH. Since H" is presumably the autocatalytic species
v(x) at different times for a model witkk=0, =1, y=1,  our picture does not compare well.

e=2, A=0.3, B=0.08, ands?=0.005. Lee and Swinney4] have performed numerical simula-
tions of the four-variable Gaspar-Showaltgf model in one
V. CONCLUSIONS space dimension and find spot replication also. There are

qualitative differences between Lee and Swinney’s simula-

We have presented the calculations containedl6inin  tions and their experiments. In his experiments, colliding
detail and shown how they generalize to cover a class ofronts repel and in their simulations they annihilate. Another
systems that can be described by the fuel and fire picturdaifficulty in reconciling the experiments and simulations is
The key element for spot replication is the multivaluednesghat in the simulations replication was found only when the
of ¢(L~,L™) and the disappearance of the=0 branch of diffusion coefficient of H was set lower than the other spe-
solutions when the fuel flux exceeds a critical value. cies. The absence of a mechanism that slows down the dif-

Ours is not the only theory of spot replication. The exis-fusion of H" relative to the other species makes it doubtful
tence of nontrivial stationary solutions that approach thehat the simulations provide an accurate mirror of the experi-
fixed valueu=1, v=0 as|x|— in the Gray-Scott model ments. We also remark that Lee and Swinney’s simulations
has also been analyzed by Doelman, Kaper, and Zegelingre not well described by either our work or the work of
[7]. They prove the existence of single- and multiple-pulseHagberg and Meron. The null clines of the two-variable
solutions in the infinite line. They also prove that traveling Gaspar-Showalter model bear little in common with either
pulses of the same typsannotexist. The authors conclude the Gray-Scott null clines or the Fitzhugh-Nagumo null
that this nonexistence is somehow related to splittingclines.
“while the numerically observed moving pulses begin to re- Currently there are no results, either analytical or numeri-
semble the non-existingsic] traveling solitary pulses more cal, in full qualitative agreement with the experimental re-
and more, they must undergo some transformation, such asllts. Since there are qualitative differences between the
pulse-splitting[sic|.” This is similar to what we have found analyses, the experiments, and Lee and Swinney’s numerical
in our stability analysis, since in our case a fast developingimulations we conclude that the replication phenomenon is
instability means the nonexistence of a solution with the timemore general than demonstrated by the current analyses.
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APPENDIX A

We show in this appendix how the solutions in the inner
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(k,n—1)
out

——cC

u(k+2,n)_Au(k,n): B
5Tm

out out

JBul 7,
n=1, k=0, (A8)
where we have used the relationg=B 7, and dx7/ 97y

=\Bc.

Using the recurrence relation®7) and (A8) we will

and outer regions can be matched to all orders. In order t5N°W how the inner and outer solutions can go smoothly into

determine how the inner solutions behave in the matchin
regions, we neglect, as before, all the terms that are nonline

in v, in Egs.(11)—(14). We find Eq.(17) for v{" and
oM vt gt~
+c —p(M=—" for n>1,
X2, (in) axp UM an,
(A1)
Ay
7—=0, (A2)
X
J2u® A
7= QA (A3)
IXin B
2y auly A
= ) —_
O')Xﬁ] C( Tin 5'Xin + B u|n ’ (A4)
and
7 o
_ _(n+2): _ . _— = (n) =
ax% Uin o c(7in) . B uj,” for n=2.
(A5)

Equation (A1) implies that v{"— P (x;,)exd(—c/2
T \c%14+1)x;,] as Xj,— *%, where the variouP(i"ZD(xin)
are polynomials of degrea—1 with coefficients that are
functions of7;,. The solutions to EQgA2)—(A5) determine
how v, behaves in the matching regions.

In order to find the behavior di,, in the matching re-
gions, we expand, as before, the differeff)’s in power
series inx aroundx=xj'. We obtain

(k,n)
out

(x—x)*

kt (A6)

=2
Uy t= u
out <

u™/ax

where we have definea{" = s*u")

k|x=xT- (Notice that
(k,n)»

theug;"”’s are functions ofr,.) Inserting these expansions
in Egs.(9) and(10) and equating terms with equal powers of
x—x7' we find

Ugst’ =AU — A, (A7)

(k+2,0 _ (k,0)
uout _Auout '

k

=

=

1

ne another. For this purpose we insert the expangiaés
d the definition ok;,, given by Eq(3), into Eq.(7) to find

k

5n+k Xin
ou= 2 T Yot gz (A9)
We now define
ot 1 XK
M= = . (kn) TN
" \/En,kzo;Mk:i k! Uout §k7§ (A10)

Using this definition, we can rewrite the outer solutions in
the matching regions as

Uout= \/Ez swih,

=0

(A11)

Thus we see from Eqg5) and (Al1l) that in order to get
solutions such that in the matching regions satisfy= u;,
we need that

w© =0, (A12a)
wih=ul) =1 (A12b)
Equation(A12a) implies thatu{Q(x=x" =u%9=0, which

is exactly condition(25). It can be shown, after some alge-
bra, that if thew)’s are defined as in Eq(A10) with
w@=ull9=0 and theul"'s satisfying Egs.(A7) and
(A8), then thew(i)’s are solutions of Eq9A2)—(A5). This
means that if we choose boundary conditions for the inner
and outer regions such that all thé)’s satisfy Eqs(A12) at
one particular value of;, in the matching region, then the
equality (A12) will hold for all x;, in the matching region.
The recurrence relatiori®\7) and (A8) also show that all
the functionsu:V(7,,) with k=2 are uniquely determined
by the functionsM () and L(W(7,), n=0, where we
have used the definition€1) and (22). Thus, using Egs.
(A7)—(A9) we can writeu,, in the matching region entirely
in terms ofc, the various.(™ andM (™, and theirr deriva-
tives. Using Eqs(A7), (A8), and(A10) we can construct a
solution to Eqs(A2)—(A5), and thereforey;, in the matching
region, in terms of the same quantities. Moreover, solutions
constructed in this way will satisfu,,= u;, in this region.
Consequently, this scheme gives us a prescription of how
Uyt @and u;, should behave in the matching region so that
they go smoothly into one another.

APPENDIX B

We sketch in this appendix how to obtain the single-spot
solution up to any desired order wheff andx}' are time
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independent. We start by discussing the solutions in the outeB3) and(A10) that the derivativesw'™/dx;,, n=1, do not

regions. Given the boundary conditiof®9), we can write

depend orM,. In fact, they can be completely specified in

these solutions in the following way. In the left outer region s ms of the parameterd and B, the functions{M®

M m
Xg SX=X7,

cosh AY2(x—x]

(0) _
u X)=1— ,
o= 0= oSt AT T~ ]

(B1)
cosh AY2(x—x3h]
cosi AY2(x]—xg')]

u(n) (X)=M (n)

out— -

+f*M1dy[G<x—x3” Y=g
)
+G(x=xy ,—y+xg)]

(n—-1)
gyt

X, , h=1,
I Tout (X, Toup)

where we have used (©=0 and defined
1
JA

—cotl 2AYA xP'—x§') Isinh AY2¢)}),

G(w,w’)=— (sinh(AY2¢"){cosh AY%)

w’ <w
(B2)
G(w',w)=G(w,w"),

whereé=w+x"—x} and¢’'=o'+x7"—x} . Analogously,
the solutions in the right outer regiof’<x=<x}' read
cosi AYHx—x}"]

cosf AMA(x7'—x1")]’

UE)(L)I)H—(X) =1-
(B3)

12y _ M
4 (x)=M(") COSHAY(x—x7)]
out+ + COSHAl/Z(XT_XlM)]
XM
+fnfdy[G(x—le y—x
X1
+G(x—x)", —y+xh]

—1
aug&t :

X X, Touw), N=1,

ITout

with G(w,w’) given by Eq.(B2), but with é=w+x}'—x['
and & =w’+x)'—xJ'".

I<n}, the distances!—x§ andx]"—x}' [or the fluxesL .
through Eq.(32)], and theirr derivatives. Thus the boundary
conditions foru{"™ can be written completely in terms of the
same quantities. In particular, far= 1, they are given by Eq.
(28). Then, since solving the inner equations for
(u{™ ,u{M) determines the values " (see the discussion
below), we need to solve the inner equations at each order
for all timesbefore we can move to the next order.

Although we cannot solve the inner equations analyti-
cally, we can still describe how to carry on the construction
of the whole solution up to any desired order as follows. Let
us choose, at one particular timre a value for the distances
xT—xg andx]—x}". Given these distances, we can imme-
diately calculate the outer solutio ?,)E using Eqs.(30)
and (31), and the fluxed ., using Eq.(32), at that same
time. Given the fluxes, we can integrate numerically Egs.
(11) in order to find a particular solutiorut ,v*) that satis-
fies the boundary condition®28) at that time. Let us write
this solution in a way such that

U*NLiXin‘F Mi f

. —cFc?+4
VT UL, BXP T Xin

(B5)

in the matching regions;,— * . Suppose, without loss of
generality, that the origin of coordinates is such that
urloxi,=0 at x;,=0. Then, any pair of functions of the
form

H(Xin):U*(Xin_g)i E(Xin):l}*(xin_g) (B6)
is also a solution of Eq€11) with asymptotic behavior

ENLiXinJ" M.,

(B7)
- —c¥\c*+4
VD OXP 5 Xin| aS Xin— *£ 0,
where
Mi:Mf_—Lq—g,
- (B8)
_ ct+c’+4
Viw=U%, €X 5 ¢

We now focus on the solutions to the inner equations, for
which we need to specify the boundary conditions. Accord-Thus any translation of the original solution of the fofB6)
ing to the discussion in Appendix A, the appropriate bound4s a solution of Eqs(11) that satisfies the boundary condi-

ary conditions are

aulm  ow

IXin IXin

(B4)

vV =0 as xjpy— ==,

wheren=1 and the various/" must be calculated as in Eq.

(A10) with ugﬁ't“t), respectively. It follows from EqsB1)—

tions (28) and can be matched to the left and right outer
solutions up to this order. So a general solution of Efj$)

is a function of of the form(B6)—(B8), where{ is the point

at which au{"/ox;,=0. It is clear that whileM . and7-.,
change withZ, c andL .. remain invariant. Therefore, as we
mentioned before, we can integrate E83) without know-
ing the exact value of. We proceed by noting that a nu-
merical integration of Eq.12) requires that we specify seven
constants: the boundary parametets, M., v, and the
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velocity c. In addition, due to the translational invariance of real function of i, is also a solution. Now, the boundary
Eq. (12), there is a degenerate family of solutions differing conditions are not “translationally invariant” in the follow-
only in their shift from the origirg. The numerical procedure ing sense. In the hypothetical case that we could solve the
consists of shooting the solutions into the origin from theirequations at a given time for an interval of values of
asymptotic behaviors at,~* [Eq. (B7)] (using a suit- | @) then the different solutions would not be related by a
ably large value ok;, in place ofxj,~*). At the origin,  gpatial translation. Therefore, we expect ELp) to be solv-
Etuire will be four matching conditions: the continuity of 5 e only for certain values df@ or, equivalently, certain
u,v and their first derivatives. We introduce a fifth matching 5 ,es of (). -

condition to break the translational degeneracy by requiring  Ths discussion shows that we first need to ensure that Eq.

Julgxin=0 atx;,=0 (this has the effect of setting=0 and (12) is indeed solvable. In order to do this, we transform our

M. =M2). If we now fix the values oL .. (by specifying  problem so as to have homogeneous boundary conditions.
the locations of the spotsve see that we have five free For this purpose we define
parameters to vary such that the five boundary conditions are
satisfied, which implies that there will be a discrete spectrum
of acceptable values fovl% , v..., andc. Numerically we
accomplish this by using an Adams-Bashforth solver to inte-
grate the equations, while varying the parameters using a
Powell methodsee[15] for details on these methods and the
subroutines used

This integration gives andL . [andL‘? via Eq.(26)] as
functions of r;,. Also, we can formally writeM .. andv -,
as in Eq.(B8) for all times with ¢ an unknown function of
Tin. Thus, using Eq926), (27), (32), (B1), and(B3), we can
write the solutionsi{L), and its derivatives (2, at all times,
in terms of LY(7,,), c(r,), and the unknown function A

{(7in). In particular, theL(f) read

A
p| ui(nz)—( ~ 5 X2+ L(,Z)Xf,(X)'f‘ L(+2)Xf+(X)

q (2) ’
Uin

(B12
wheref . (x)—1 for x— * . For example, we may choose

f_(x)=(1—tanhx)/2 andf  (x)=(1+tanhx)/2. Therefore,
we now need to solve the equation

2

( p) ~5pm x?vly)
o=\ o A, o
c L2 gy | 283 Uin
LP=—-M2+ L+ - LPl1- —
- - -2 A ; L@xf_(x)+L@xf, (x) 813
VALY L® 0 B3
X —(1)2)+arctan — . (B9)
A—-LY VA subject to the boundary conditioh6]
Th ing Eqs(B4), (A1), and (B9) ite th P
us, using Eqgs(B4), , an , we can write the -~ | _ _
boundary conditions for Eq12): &;'“ 0 for xjp—*ee. (B14)
au'? A L The zero modev satisfies these new boundary conditions,
. B® Xin T ? namely,ow, /9x;,=0=w, asx;n— *=o. Then, the operator
in

(B10o)  adjoint to £, L£* also has a zero mode* such that
w3 /dxin=0=w3 asx;n— *+o. Then, for Eq.(B13) to be
solvable we need its right-hand side to be orthogonatto
(see, e.g., Refl17] and Krischer and Mikhailoy7]). The
at all times in terms of the same quantit[ds]. ogf;ogona(l;t)y condition will establish a re!atiqnship bfatween
Now, Eq.(12) is linear and we know thafw=0 for L** andL}’ at each value ofm, from which, in principle,
we should be able to determine the value/6f;,).
Assume now that we have determingdr;,) and found a
aul® solution to Eq.(B13) or, equivalently, to Eq(12). Then, as
% we mentioned before, we can add an arbitrary multiple of the
('8) (B11)  zero mode ofC and still have a solution. This arbitrary mul-
Wiy tiple can be determined at the next order by exactly the same
MNXin technique that we have just described, namely, by requiring
solvability of Eq.(13), which is linear and involves the same
The existence of this zero mode 6fis due to the transla- operator£. Clearly, at each order we will have the same
tional invariance of Eqg11). Due to this zero mode, we can arbitrariness, in the sense that we can add any multiple of the
also see that if there is a solution** ,u**)T of Eq. (12),  zero mode ofC and still have a solution. A solvability con-
then it is not unique since any function of the fofm** dition at the following order will then determine this mul-
+a(aul®laxi), v** +a(av{Dax,) 1T with « an arbitrary tiple.

vfnz)—>0 as Xj;— *to»
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